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Larger and more instructable language models become less reliable

Polytechnic University of Valencia

Lexin Zhou, Wout Schellaert, Fernando Martinez-Plumed, Yael Moros-Daval, César Ferri & José

Hernandez-Orallo

Abstract

The prevailing methods to make large language models more powerful and amenable have
been based on continuous scaling up (that is, increasing their size, data volume and
computational resourcesl) and bespoke shaping up (including post-filtering2,3, fine tuning
or use of human feedback4,5). However, larger and more instructable large language
models may have become less reliable. By studying the relationship between difficulty
concordance, task avoidance and prompting stability of several language model families,
here we show that easy instances for human participants are also easy for the models, but
scaled-up, shaped-up models do not secure areas of low difficulty in which either the model
does not err or human supervision can spot the errors. We also find that early models often
avoid user questions but scaled-up, shaped-up models tend to give an apparently sensible
yet wrong answer much more often, including errors on difficult questions that human
supervisors frequently overlook. Moreover, we observe that stability to different natural
phrasings of the same question is improved by scaling-up and shaping-up interventions, but
pockets of variability persist across difficulty levels. These findings highlight the need for a
fundamental shift in the design and development of general-purpose artificial intelligence,
particularly in high-stakes areas for which a predictable distribution of errors is paramount.
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Main

Millions of people are using general-purpose artificial intelligence (Al) systems based on
large language models (LLMs), which have become commonplace in areas such as
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education6, medicine7, science8,9 and administration10,11. As these models frequently
make mistakes, users have to supervise model operation and manage their expectations, for
the reliable use of these systems. With language models becoming larger and more
instructable, we need to analyse how this reliability has evolved. Since the early
LLMs12,13,14, models have been scaled up—trained with more parameters, on larger
datasets and with longer training times—and have also been shaped up with human
feedback—using techniques such as instruction fine tuning4, reinforcement learning from
human feedback (RLHF)5 or output-filtering moderation techniques2,3.

It may be taken for granted that as models become more powerful and better aligned by
using these strategies, they also become more reliable from a human perspective, that is,
their errors follow a predictable pattern that humans can understand and adjust their queries
tol5. For instance, early models failed at simple additions such as ‘20 + 183°. Performance
was highly predictable: failure was common. As a result, users easily understood that there
was no operating range for this task: nobody used these models for addition. A few
scaled-up and shaped-up generations later, the models not only seemingly master these
additions but also successfully perform additions of 50 digits or more. Because of this
prowess, people may start using them as calculators (for example, to convert measurements
to different units16). It is only in such cases that users become disappointed when the model
fails at a simple prompt such as ‘Add 3913 and 92°’. The user-driven reliability is then
seriously damaged, because the model fails when the user thinks these digits were in the
operating range. The experience becomes even more baffling when the user gets the correct
answer if the question is adjusted slightly, for example to ‘3913 +92=", or if it is not
changed at all—because many models are configured to be non-deterministic. Although this
prompt sensitivity has been analysed extensively17,18,19,20, it is poorly understood why
an over-diligent system spouts a wrong answer for 100-digit addition instead of simply
answering ‘I’m afraid I can’t do that’. This reckless behaviour has been incentivized by
developers building models that are ‘never evasive’21.

Reliability fluctuations

To understand the evolution of reliability, we analyse the trajectory of several families of
LLMs: the generative pre-training (GPT) saga developed by OpenAl, the LLaMA series
developed by Meta and the BLOOM suite developed by BigScience. GPT has led the state
of the art in the past few years and, according to several surveys22,23,24, is central to the
LLM ecosystem, influencing transformer-based architectures, training data, evaluation
frameworks and alignment techniques. LLaMAZ25,26 is the best example of a family for
which weights have been released, and BLOOM?27,28 is the result of an even more open
endeavour coming from the scientific community. Each family represents a genuine effort
of making LLMs more capable and better aligned at the same time. Table 1 summarizes the
details of models in these three families. Scaling (increasing the number of parameters, data
size and compute) has been identified as a key predictor for overall performancel, and
shaping (modifying the trained systems) has improved their instructability and alignment.
This creates two categories. The first includes the ‘raw’ models—GPT-3 ada, babbage,

14


https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y
https://www.nature.com/articles/s41586-024-07930-y

curie and davinci—the non-chat LLaMA models and the base (non-z) BLOOM models.
The second comprises the shaped-up models (or instruct or chat models), which incorporate
some kind of instruction adaptation22, fine tuning or safety moderation of the outputs. For
our analysis, it is convenient that BLOOM and LLaMA have six and three exactly paired
versions, respectively, of raw and shaped-up models to disentangle scaling up from shaping

up.

Table 1 Ten GPT, ten LLaMA and twelve BLOOM models

https://www.nature.com/articles/s41586-024-07930-y/tables/1 (Full size table)

Figure 1 represents how some key indicators show that the shaped-up models (in blue) are
more stable to prompt variation and are more correct, at the cost of being less concordant
with human difficulty, and having more overall failures (less prudent). The indicators
summarize the behaviour of five carefully selected benchmarks in the domains of simple
numeracy (‘addition’), vocabulary reshuffle (‘anagram’), geographical knowledge
(‘locality’), diverse scientific skills (‘science’) and information-centric transformations
(‘transforms’). This covers a range of domains and degrees of open-endedness of the
answers.

Fig. 1: Key indicators for several models in GPT (OpenAl), LLaMA (Meta) and BLOOM
(BigScience) families.
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The raw models (yellow to orange) and the shaped-up models (light to dark blue) cluster
differently. As the answers for all these models fall into three categories (correct, avoidant
and incorrect), shortened as c, a and i, respectively, we have indicators for correctness
versus avoidance + incorrectness, and prudence (correctness +avoidance) versus
incorrectness. Looking at the correctness indicators (top half), which represent accurate
responses, we see that the shaped-up models are more stable to prompt variations and are
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more frequently correct (higher correctness proportion) but are less concordant with human
difficulty than the raw counterparts. Looking at the prudence indicators (bottom half), we
see that the shaped-up models are also more stable to prompt variations, but fail more
frequently (lower prudence proportion, by avoiding less) and are not much more concordant
with human difficulty. Focusing only on the shaped-up models (in blue), we observe that
the most powerful GPT-4 v.2, LLaMA-2-70b-chat and BLOOMz-176b models perform
best in correctness proportion and prompting stability (top and bottom), but equal to or
worse than other models for all the other indicators, with many fluctuations that do not
indicate a clear positive trend in these other dimensions. Details of the indicators and data
used for this plot are found in the Methods. Extended Data Table 1 provides a more detailed
perspective on the same results.

https://www.nature.com/articles/s41586-024-07930-y#MOESM3

We identify good intrinsic proxies for human difficulty based on relevant literature in the
first two domains (‘addition’ and ‘anagram’), or by identifying demand-related features in
the rest (excluding ‘science’, for which multiple human difficulty assessments were already
available for all the instances29). To determine their quality, we conducted an extensive
human study (S1) to assess which difficulty proxies best matched human expectations, and
calibrate the proxies to a normalized difficulty score, ranging from 0 to 100, representing
the anticipated percentage of failure for the ‘average human’. Systematically controlling for
human difficulty is crucial for the understanding of user-driven reliability: human
expectations of success depend on the perception of the difficulty of instances30,31,32.
Table 2 provides an overview of the five benchmarks, the intrinsic difficulty function used
as a proxy for human difficulty (discussed in the Methods), some examples and the
calibrated human difficulty values for the given examples.

Table 2 Five benchmarks  (https://www.nature.com/articles/s41586-024-07930-y/tables/2)

Another necessary and innovative element in our analysis is that we consider three
categories for the responses: correct, incorrect and avoidant, denoted by c, 1 and a,
respectively. Avoidance in human participants has been extensively explored in
psychology33,34,35. Such avoidant behaviours include procrastination, deviation, making
excuses or simply not answering. For LLMs, avoidance is also referred to as hedging,
refusal3 or evasiveness21, including fortuitous utterances or continuations that are not
answers (non-conforming), and those responses at the meta-level explaining why the
question is not answered (for epistemic or ethical reasons). Supplementary Table 11 shows
the types of avoidance for some tasks in the five benchmarks.

Difficulty concordance, task avoidance and prompting stability must be regarded from the
point of view of human users interacting with LLMs. Our human study S1 (see
Supplementary Note 6) analyses whether human perceptions of difficulty in general are
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aligned with actual human performance and self-confidence, because this has important
implications in the tasks humans decide to delegate to language models and their prompt
formulation. But as crucial as the inputs are, so is the way the outputs from the model are
used, verified or supervised. The context of use of both input and output determines how
reliable the use of these systems is. We conducted a second human study S2 (see
Supplementary Note 7), in which we explore whether human participants can accurately
assess the outputs of models and thus compensate for different types of error. With a
three-valued confusion matrix with correctness, avoidance and incorrectness, we can focus
on the frequency of non-avoidant cases for which humans believe the output is correct but it
is not (Fig. 3).

With this setup, we investigate three core and intertwined elements that affect the reliability
of LLMs from a human perspective.

1. Difficulty concordance. Are errors more likely for items that humans perceive as
difficult? Do scaling and shaping eliminate errors for easy items, thereby creating areas
of reliable operation?

2. Task avoidance. How often do language models give plausible but wrong answers
instead of safely avoiding answering questions? Are scaled-up, shaped-up models
better at avoiding errors or making them detectable for humans?

3. Prompting stability. How are correctness and avoidance affected by tangential changes
in the prompt? Are scaled-up, shaped-up models less sensitive to prompt variation
across difficulty levels?

We will answer these questions by using human difficulty metrics for each benchmark (see
Table 2), examining different kinds of avoidance (Supplementary Table 11), and using 15
natural prompt variations—prompts conceived as genuine instructions or questions
provided by humans—per benchmark (Supplementary Tables 1 and 2). Difficulty,
avoidance and prompting, as well as their evolution, have been analysed from different
perspectives17,18,19,36,37,38,39 (see Supplementary Note 13 for a full discussion). Here
we focus on the systemic interaction of these three elements from the perspective of LLM
scaling and shaping up.

Results

Figure 2 shows the results of a selection of models in the GPT and LLaMA families,
increasingly scaled up, with the shaped-up models on the right, for the five domains:
‘addition’, ‘anagram’, ‘locality’, ‘science’ and ‘transforms’. We see that the percentage of
correct responses increases for scaled-up, shaped-up models, as we approach the last
column. This is an expected result and holds consistently for the rest of the models, shown
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in Extended Data Fig. 1 (GPT), Extended Data Fig. 2 (LLaMA) and Supplementary
Fig. 14 (BLOOM family).

Fig.2: Performance of a selection of GPT and LLaMA models with increasing difficulty.
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The values are split by correct, avoidant and incorrect results. For each combination of
model and benchmark, the result is the average of 15 prompt templates (see Supplementary
Tables 1 and 2). For each benchmark, we show its chosen intrinsic difficulty, monotonically
calibrated to human expectations on the x axis for ease of comparison between benchmarks.
The x axis is split into 30 equal-sized bins, for which the ranges must be taken as indicative
of different distributions of perceived human difficulty across benchmarks. For ‘science’,
the transparent yellow bars at the bottom represent the random guess probability (25% of
the non-avoidance answers). Plots for all GPT and LLaMA models are provided in
Extended Data Figs. 1 and 2 and for the BLOOM family in Supplementary Fig. 14.

Let us focus on the evolution of correctness with respect to difficulty. For ‘addition’, we use
the number of carry operations in the sum (fcry). For ‘anagram’, we use the number of
letters of the given anagram (flet). For ‘locality’, we use the inverse of city popularity
(fpop). For ‘science’, we use human difficulty (fhum) directly. For ‘transforms’, we use a
combination of input and output word counts and Levenshtein distance (fw+1) (Table 2). As
we discuss in the Methods, these are chosen as good proxies of human expectations about
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what is hard or easy according to human study S1 (see Supplementary Note 6). As the
difficulty increases, correctness noticeably decreases for all the models. To confirm this,
Supplementary Table 8 shows the correlations between correctness and the proxies for
human difficulty. Except for BLOOM for addition, all of them are high.

However, despite the predictive power of human difficulty metrics for correctness, full
reliability is not even achieved at very low difficulty levels. Although the models can solve
highly challenging instances, they also still fail at very simple ones. This is especially
evident for ‘anagram’ (GPT), ‘science’ (LLaMA) and ‘locality’ and ‘transforms’ (GPT and
LLaMA), proving the presence of a difficulty discordance phenomenon. The discordance is
observed across all the LLMs, with no apparent improvement through the strategies of
scaling up and shaping up, confirmed by the aggregated metric shown in Fig. 1. This is
especially the case for GPT-4, compared with its predecessor GPT-3.5-turbo, primarily
increasing performance on instances of medium or high difficulty with no clear
improvement for easy tasks. For the LLaMA family, no model achieves 60% correctness at
the simplest difficulty level (discounting 25% random guess for ‘science’). The only
exception is a region with low difficulty for ‘science’ with GPT-4, with almost perfect
results up to medium difficulty levels.

Focusing on the trend across models, we also see something more: the percentage of
incorrect results increases markedly from the raw to the shaped-up models, as a
consequence of substantially reducing avoidance (which almost disappears for GPT-4).
Where the raw models tend to give non-conforming outputs that cannot be interpreted as an
answer (Supplementary Fig. 16), shaped-up models instead give seemingly plausible but
wrong answers. More concretely, the area of avoidance in Fig. 2 decreases drastically from
GPT-3 ada to text-davinci-003 and is replaced with increasingly more incorrect answers.
Then, for GPT-3.5-turbo, avoidance increases slightly, only to taper off again with GPT-4.
This change from avoidant to incorrect answers is less pronounced for the LLaMA family,
but still clear when comparing the first with the last models. This is summarized by the
prudence indicators in Fig. 1, showing that the shaped-up models perform worse in terms of
avoidance. This does not match the expectation that more recent LLMs would more
successfully avoid answering outside their operating range. In our analysis of the types of
avoidance (see Supplementary Note 15), we do see non-conforming avoidance changing to
epistemic avoidance for shaped-up models, which is a positive trend. But the pattern is not
consistent, and cannot compensate for the general drop in avoidance.

Looking at the trend over difficulty, the important question is whether avoidance increases
for more difficult instances, as would be appropriate for the corresponding lower level of
correctness. Figure 2 shows that this is not the case. There are only a few pockets of
correlation and the correlations are weak. This is the case for the last three GPT models for
‘anagram’, ‘locality’ and ‘science’ and a few LLaMA models for ‘anagram’ and ‘science’.
In some other cases, we see an initial increase in avoidance but then stagnation at higher
difficulty levels. The percentage of avoidant answers rarely rises quicker than the
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percentage of incorrect ones. The reading is clear: errors still become more frequent. This
represents an involution in reliability: there is no difficulty range for which errors are
improbable, either because the questions are so easy that the model never fails or because
they are so difficult that the model always avoids giving an answer.

We next wondered whether it is possible that this lack of reliability may be motivated by
some prompts being especially poor or brittle, and whether we could find a secure region
for those particular prompts. We analyse prompt sensitivity disaggregating by correctness,
avoidance and incorrectness, using the prompts in Supplementary Tables 1 and 2. A direct
disaggregation can be found in Supplementary Fig. 1, showing that shaped-up models are,
in general, less sensitive to prompt variation. But if we look at the evolution against
difficulty, as shown in Extended Data Figs. 3 and 4 for the most representative models of
the GPT and LLaMA families, respectively (all models are shown in Supplementary
Figs. 12, 13 and 15), we observe a big difference between the raw models (represented by
GPT-3 davinci) and other models of the GPT family, whereas the LLaMA family
underwent a more timid transformation. The raw GPT and all the LLaMA models are
highly sensitive to the prompts, even in the case of highly unambiguous tasks such as
‘addition’. Difficulty does not seem to affect sensitivity very much, and for easy instances,
we see that the raw models (particularly, GPT-3 davinci and non-chat LLaMA models)
have some capacity that is unlocked only by carefully chosen prompts. Things change
substantially for the shaped-up models, the last six GPT models and the last three LLaMA
(chat) models, which are more stable, but with pockets of variability across difficulty levels.

Overall, these different levels of prompt sensitivity across difficulty levels have important
implications for users, especially as human study S2 shows that supervision is not able to
compensate for this unreliability (Fig. 3). Looking at the correct-to-incorrect type of error in
Fig. 3 (red), if the user expectations on difficulty were aligned with model results, we
should have fewer cases on the left area of the curve (easy instances), and those should be
better verified by humans. This would lead to a safe haven or operating area for those
instances that are regarded as easy by humans, with low error from the model and low
supervision error from the human using the response from the model. However,
unfortunately, this happens only for easy additions and for a wider range of anagrams,
because verification is generally straightforward for these two datasets.
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Fig. 3: Evolution of types of supervision error versus difficulty according to human
survey S2.
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Inthe survey (Supplementary Fig. 4), participants have to determine whether the output of a model is correct, avoidant or incorrect (or do not know,
represented by the ‘unsure’ option in the questionnaire). Difficulty (x axis) is shown in equal-sized bins. We see very few areas where the dangerous error

(incorrect being considered correct by participants) is sufficiently low to consider a safe operating region.

In the survey (Supplementary Fig. 4), participants have to determine whether the output of a
model is correct, avoidant or incorrect (or do not know, represented by the ‘unsure’ option
in the questionnaire). Difficulty (x axis) is shown in equal-sized bins. We see very few
areas where the dangerous error (incorrect being considered correct by participants) is
sufficiently low to consider a safe operating region.

Our observations about GPT and LLaMA also apply to the BLOOM family (Supplementary
Note 11). To disentangle the effects of scaling and shaping, we conduct an ablation study
using LLaMA and BLOOM models in their shaped-up versions (named chat and z,
respectively) and the raw versions, with the advantage that each pair has equal pre-training
data and configuration. We also include all other models with known compute, such as the
non-instruct GPT models. We take the same data summarized in Fig. 1 (Extended Data
Table 1) and perform a scaling analysis using the FLOPs (floating-point operations) column
in Table 1. FLOPs information usually captures both data and parameter count if models are
well dimensioned40. We separate the trends between raw and shaped-up models. The fact
that correctness increases with scale has been systematically shown in the literature of
scaling laws1,40. With our data and three-outcome labelling, we can now analyse the
unexplored evolution of avoidance and incorrectness (Fig. 4, left).
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Fig. 4: Scaling analysis of LLaMA and BLOOM families and non-instruct GPT models.
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The plot uses a logarithmic scale for FLOPs. The focus is on avoidance (a; top left), incorrectness (i; bottom left) and ultracrepidarianism (i/(a + i); right)—
the proportion of incorrect over both avoidant and incorrect answers.

As evident in Fig. 4, avoidance is clearly much lower for shaped-up models (blue) than for
raw models (orange), but incorrectness is much higher. But even if correctness increases
with scale, incorrectness does not decrease; for the raw models, it increases considerably.
This is surprising, and it becomes more evident when we analyse the percentage of
incorrect responses for those that are not correct in (i/(a +1) in our notation; Fig. 4 (right)).
We see a large increase in the proportion of errors, with models becoming more
ultracrepidarian (increasingly giving a non-avoidant answer when they do not know,
consequently failing proportionally more).

We can now take all these observations and trends into account, in tandem with the
expectations of a regular human user (study S1) and the limited human capability for
verification and supervision (study S2). This leads to a re-understanding of the reliability
evolution of LLMs, organized in groups of two findings for difficulty discordance (Fla and
F1b), task avoidance (F2a and F2b) and prompt sensitivity (F3a and F3b):

Fla—human difficulty proxies serve as valuable predictors for LLM correctness. Proxies of
human difficulty are negatively correlated with correctness, implying that for a given task,
humans themselves can have approximate expectations for the correctness of an instance.
Relevance: this predictability is crucial as alternative success estimators when model
self-confidence is either not available or markedly weakened (for example, RLHF ruining
calibration3,41).

F1b—improvement happens at hard instances as problems with easy instances persist,
extending the difficulty discordance. Current LLMs clearly lack easy operating areas with
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no error. In fact, the latest models of all the families are not securing any reliable operating
area. Relevance: this is especially concerning in applications that demand the identification
of operating conditions with high reliability.

F2a—scaling and shaping currently exchange avoidance for more incorrectness. The level
of avoidance depends on the model version used, and in some cases, it vanishes entirely,
with incorrectness taking important proportions of the waning avoidance (that is,
ultracrepidarianism). Relevance: this elimination of the buffer of avoidance (intentionally or
not) may lead users to initially overtrust tasks they do not command, but may cause them to
be let down in the long term.

F2b—avoidance does not increase with difficulty, and rejections by human supervision do
not either. Model errors increase with difficulty, but avoidance does not. Users can
recognize these high-difficulty instances but still make frequent incorrect-to-correct
supervision errors. Relevance: users do not sufficiently use their expectations on difficulty
to compensate for increasing error rates in high-difficulty regions, indicating over-reliance.

F3a—scaling up and shaping up may not free users from prompt engineering. Our
observations indicate that there is an increase in prompting stability. However, models
differ in their levels of prompt sensitivity, and this varies across difficulty levels. Relevance:
users may struggle to find prompts that benefit avoidance over incorrect answers. Human
supervision does not fix these errors.

F3b—improvement in prompt performance is not monotonic across difficulty levels. Some
prompts do not follow the monotonic trend of the average, are less conforming with the
difficulty metric and have fewer errors for hard instances. Relevance: this non-monotonicity
is problematic because users may be swayed by prompts that work well for difficult
instances but simultaneously get more incorrect responses for the easy instances.

As shown in Fig. 1, we can revisit the summarized indicators of the three families. Looking
at the two main clusters and the worse results of the shaped-up models on errors and
difficulty concordance, we may rush to conclude that all kinds of scaling up and shaping up
are inappropriate for ensuring user-driven reliability in the future. However, these effects
may well be the result of the specific aspirations for these models: higher correctness rates
(to excel in the benchmarks by getting more instances right but not necessarily all the easy
ones) and higher instructability (to look diligent by saying something meaningful at the cost
of being wrong). For instance, in scaling up, there is a tendency to include larger training
corpora42 with more difficult examples, or giving more weight to authoritative sources,
which may include more sophisticated examples43, dominating the loss over more
straightforward examples. Moreover, shaping up has usually penalized answers that hedge
or look uncertain3. That makes us wonder whether this could all be different.
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Discussion

In this paper, we have conducted two human studies. The first investigates perceived and
actual difficulty for participants to respond to an input (to determine whether difficulty
expectations are correlated with difficulty proxies). The second includes participants
supervising or verifying the output of a model (to determine whether humans will take
incorrect responses as correct). Maximizing difficulty concordance and reducing possible
incorrect-to-correct errors in human verification could be introduced in the loss function
when training and shaping up these models. For this, collective efforts are needed to build
larger datasets of human difficulty expectations and output supervision. With these data,
more qualified than traditional human feedback, Al itself can be used to train supervisors
that perform this shaping up, provided the aim is not to eliminate evasiveness as in ref. 21,
but to find the right level of avoidance. Specialized language models in medicine and other
critical areas may be designed with reject options, or coupled with external Al supervisors,
thereby favouring avoidance by teaching the Al models when to refrain from answering37.
These interventions should make LLMs exhibit enhanced human-like and human-aligned
characteristics that ensure reliability. Until this is done, and given the high penetration of
LLM use in the general population, we raise awareness that relying on human oversight for
these systems is a hazard, especially for areas for which the truth is critical.

Finally, we include some limitations of our analysis and the future work that emanates from
them. The first limitation of our study lies in the recruitment of participants who are mostly
non-experts. We have to take this into account when interpreting the calibrated difficulty
values, which are usually high for some benchmarks, as there is a high number of questions
that cannot be solved by the general population. However, our motivation was to capture
the same human population to estimate expected instance difficulties that are comparable
across all the datasets. A second limitation is that our sample of ‘natural’ prompts was
collected from a diversity of sources, but we did not have access to the frequency in which a
prompt may appear in a real scenario. Last, we have only covered a sample of families with
specific trajectories, excluding LLMs that delegate tasks to external tools or use
sophisticated reasoning techniques, which may show different dynamics. The GPT family
has been at the forefront in performance and has been used over a few years, making
OpenAl extremely influential in the development of other language models22,23. In fact,
the OpenAl application programming interface has the most dependencies when the
ecosystems of foundation models are analysed24. LLaMA and BLOOM have a more open
and systematic lineup of models, not only allowing for the disentanglement between scaling
and shaping but also paving the way for an incremental analysis of their evolution using our
methodology and code, in the fast-changing context of LLM development. Highlighting the
reliability issues of these families and introducing new abstractions and tools for analysis is
of utmost importance, enabling other researchers to explore different pathways for the
scaled-up, shaped-up models of the future.
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Methods

We now explain our choices of benchmarks, prompt templates, difficulty functions,
response scoring, general experimental design and the key metrics used to evaluate the
models.

Benchmarks and factors of difficulty

For the generality of our analysis, we selected five distinct benchmarks to reduce
confounding factors as much as possible: simple numeracy (‘addition’), vocabulary
reshuffle (‘anagram’), geographical knowledge (‘locality’), basic and advanced science
questions (‘science’) and information-centric transformations (‘transforms’). These
represent core skills (numerical, linguistic and knowledge) and more diverse ecologically
valid scenarios, with some of them having extremely simple formulations and others
requiring deep understanding of the information presented, as well as the integration of data
from multiple sources. Closed-ended questions are typical of LLM research3, such as those
found in the °‘science’ benchmark, but gradually more open-ended tasks (‘addition’,
‘anagram’, ‘locality’ and ‘transforms’) better represent a wider and more realistic use of
LLMs.

Addition. This benchmark involves sums, prompting the LLMs by asking for the result of
adding two addends (such as ‘3 + 7 ="). The examples in our analysis range from 1- to
100-digit additions. Because language models can not only memorize small additions but
also generalize to cope with any combination of larger digits, this task is appropriate for
analysing difficulty trends. With respect to the difficulty of ‘addition’, the number of
digits and carry operations affect human performance on addition tasks.

Anagram. The use of anagrams as a way of assessing aspects of problem solving dates
back to 1916 (ref. 45), and researchers have been using anagrams to examine a variety of
phenomena, such as the cognitive processes involved in problem solving46. An ‘anagram’
task is a word puzzle in which the participant or model is presented with a jumbled string
of letters, and the objective is to find a word that can be formed using all the letters given.
The examples in our analysis range from 3-letter words to 20-letter words. This task
involves letter manipulation and good recall from an extensive vocabulary. One peculiar
element of this task is that it is easy to verify. The difficulty of anagrams is mostly
influenced by the frequency of the letters and the word, the number of letters and the
degree of rearrangement required.

Locality. This benchmark contains questions relating to geographical knowledge, inspired
by some cognitive models of distance estimation47. The examples in our analysis ask
questions about the location and size of cities in relation to each other, by giving an input
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city and a randomly generated distance (d, ranging from 1 to 1,000 km). The LLM is
asked to identify the most populous city (the target city) in a radius of d km from the
input city. This task requires geographical knowledge and reasoning. For this benchmark,
potential human difficulty factors could be the city or country popularity, their population
and so on.

Science. This benchmark integrates multiple-choice questions from basic science as
collected by OpenBookQA, complemented with more advanced science questions from
Google-proof Q&A (GPQA). They represent tasks that LLMs are likely to encounter in
educational, academic and research settings6,8,48, some of which require considerable
time to solve. The included questions are Google-proof49. The ‘science’ benchmark, thus,
includes questions of varying levels of difficulty, as determined by human judgement,
providing a lens through which to examine their handling of complex, data-rich tasks in
specific domains.

Transforms. This benchmark includes a comprehensive set of information-centric
transformation tasks based on real-world scenarios. It focuses on domains that are most
prevalent in the use of LLMs today50, and ensure that there is a ground truth for
evaluation. We integrate not only many data-formatting tasks—a well-studied area in
LLMs51—but also new tasks about world knowledge, information retrieval, advertising,
administration, coding, scheduling and retailing. The outputs for ‘transforms’ may require
extensive elaboration of the input (hundreds of characters) to form a correct answer,
which can also be hundreds of characters long. The aim was to simulate, as closely as
possible, the complexity and depth of real-world questions in a controlled experimental
setting. For task difficulty, given the heterogeneity, the main factors are as general as
character and word counts, and the Levenshtein distance between input and output as a
proxy of transformation effort.

For the previously described domains, we found intuitive human difficulty proxies, some of
which have been developed in the literature. Supplementary Note 4 provides further details
on the definition of difficulty metrics and the abilities behind the features used for their
definition. Using the results from human study S1, we select the difficulty functions that are
most correlated with human expectations (Supplementary Table 5): fery for
‘addition’, flet for ‘anagram’, fpop for ‘locality’ and fw+l for ‘transforms’. For ‘science’,
we blend and calibrate the two original human metrics into one, that is, thum. For all the
benchmarks, we normalize the original difficulty functions using a logistic mapping to a
scale ranging from 0 to 100 that corresponds to the probability of human failure as
estimated by humans themselves. We need to take into account that these values are an
estimate (from the human sample in S1, of their expectations) and are fitted with a
two-parameter logistic function; therefore, these values between 0% and 100% have to be
interpreted with caution, especially for small differences (see Supplementary Note 8 for
details). Nevertheless, having all the difficulty levels on the same human-expectations scale
helps with the comparison of the benchmarks.
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Data collection and generation

We first describe how the examples were collected or generated, and then the 15 prompt
templates that were used for each of them.

Addition. We randomly generate 5,000 instances, in which each addend is sampled
uniformly from 1 to 100 digits. We then remove those instances for which fhrm > 50 to
prevent instances with similar or identical numbers of digits in both addends from
dominating the upper difficulty bins. This is because, for example, if the difficulty is
the harmonic mean, the bins with thrm > 90 would be dominated by instances in which
both addends have very high numbers of digits (that is, at least 82 digits). A similar
phenomenon also occurs with other difficulty levels, but with the previous criterion
considered, the problem is well mitigated. This results in a final sample of 3,142
instances.

Anagram. We use the Google Web Trillion Word Corpus52, containing the frequency
of more than 300,000 most commonly used single words on the Web in English. From
this corpus, we randomly choose up to 100 English words with 3-20 letters, resulting in
a total of 1,570 words. There are fewer than 1,800 instances because there are fewer
than 100 English words with 17-20 letters. Then, we shuffle the order of letters
randomly to map these words into 1,570 anagrams. We make sure the resultant
permutation is not the same as the original word.

Locality. We use the World Cities Database53, which provides an up-to-date database
of the cities and towns globally. From this database, we first exclude cities with
non-unique names across the globe. Next, we remove cities with more than one word or
non-standard letters in the 26-character Latin alphabet (for example, Buenos Aires or
Chongjin) to enhance the quality and ease of the response-scoring method. After the
previous selection procedure, we seek to form a final sample that covers instances with
different difficulty levels (or bins) as equally as possible. Thus, we perform binning on
the difficulty function (fpop) to produce 100 bins in which we extract up to 50
instances from each bin randomly, resulting in a total of 2,341 instances. Again, there
are fewer than 5,000 instances because some bins contain fewer than 50 instances.

Science. This benchmark is built by integrating multiple-choice questions from
educational settings: OpenBookQA29 and GPQA49. OpenBookQA is a collection of
multiple-choice questions in basic science, based on 1,329 established facts. We
randomly sampled 1,000 questions from OpenBookQA. To complement the benchmark
with more advanced science questions, we included GPQA49—a dataset containing
546 graduate-level questions written by domain experts that challenge LLMs to
demonstrate a deep understanding of biology, physics and chemistry. We exclude two
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lengthy questions that exceed the context window limit for some of the models that we
analyse.

Transforms. This benchmark includes a comprehensive set of information-centric
transformation tasks based on real-world scenarios. We integrate many data-formatting
questions from a data-wrangling dataset51 and from a ‘natural instructions’ dataset54,
manually regenerating or adapting some of them. We also also introduce new tasks
about world knowledge, information retrieval, advertising, administration, coding,
scheduling and retailing, reflecting a wide range of real user interactions with language
models. The benchmark integrates 73 different tasks, with 10 instances each, totalling
730 items.

Prompt generation

Notably, ‘addition’, ‘anagram’, ‘locality’ and parts of ‘transforms’ are newly introduced in
this work. All five benchmarks are further supplemented with human data (see
Supplementary Note 5) for calibrating difficulty levels and supervision, as well as a new
variable describing the human-calibrated difficulty for each data instance.

Each example in each benchmark is run through an LLM using 15 different prompts, which
are the same for all the examples in the benchmark. The generation of prompt templates
aims to fulfil three requirements. First, the prompts should be as natural as possible,
because we try to model a situation in which humans interact with LLMs in a similar way to
how they would talk to other humans. Second, these prompts should be derived from or
inspired by real-world sources, except for minor variations and adaptations. Third, we need
to have sufficient coverage for and diversity of prompt templates, to robustly analyse
sensitivity, omitting those that are too similar. This process results in 15 natural prompt
templates for each benchmark, extracted from or inspired by textbooks, scientific literature,
academic exams and the internet. Supplementary Note 2 describes further details about
these prompt templates and their sources.

Response scoring

Scoring the validity of the responses of LLMs can be challenging, given that their raw text
response can vary in different ways. For example, some responses are highly elaborate,
whereas other responses are concise and straight to the point. Some responses are unrelated
or digress from the proposed question, or are just excessively verbose, providing the answer
in a larger response sequence surrounded by arbitrary information. Because our analysis
uses three classes (correct, incorrect and avoidant), the confusion matrices have nine cells,
making grading more challenging, and the traditional intuition and terminology of false
positives, false negatives, sensitivity, specificity, precision and recall cannot be easily
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extended to these three-outcome situations. In Supplementary Note 13, we discuss how
different groups of cells are named.

Manual scoring becomes infeasible due to the massive amount of answers we collect
(approximately 4.2 million). Fortunately, despite the arbitrary responses of the models, they
do exhibit a set of common patterns. We succeeded in scoring these responses using simple
algorithmic conditions and regular expressions that provide great scoring accuracy (see
Supplementary Note 3).

Experimental setup

The LLMs are described in Table 1. All the models were queried with the temperature
parameter set to zero and no system prompt. For local inference, we made use of a shared
cluster of six nodes with 8x NVIDIA A40 48 GB graphics processing units. All local
inferences were single node, made use of the Hugging Face Transformers and Accelerate
libraries, and were without quantization of the models, with the exception of BLOOMz (see
below). The total compute estimate for all the experiments (including reruns and discarded
results) is estimated to be about 100 compute days on a single 8x A40 node.

GPT: we used ten models from the GPT family (OpenAI)55. The first four models,
GPT-3 ada, babbage, curie and davinci, are the original raw models in the family14.
The subsequent three are the later and more powerful model variants (the InstructGPT
versions of davinci called text-davinci-001, text-davinci-002 and text-davinci-003)5,
which are shaped up by fine tuning with human feedback. The last three models are
also fine-tuned with human feedback and further include a moderation post-filtering
mechanism3. GPT-3.5-turbo was built as ‘gpt-3.5-0301" (March 2023), and the two
GPT-4 models differ in the time of their build (‘gpt-4-0314° and ‘gpt-4-0613”). All
these models were accessed through the public application programming interface
(API). We used the ChatCompletion API .

(https://platform.openai.com/docs/api-reference/chat/streaming).

LLaMA: we used four different scales of the first LLaMA version25: 7b, 13b, 30b and
65b. For LLaMA-2 (ref. 26), there is no 30b variant available, but we used all the other
sizes (7b, 13b and 70b), including the corresponding chat variants, which incorporate
various shaping techniques. All the inferences were run locally, except for LLaMA-65b,
for which we used the Hugging Face API, and LLaMA-2 (non-chat), for which we used
the Together. Al API.

BLOOM: we used the six different scales (560m to 176b) of the BLOOM27 and
BLOOMz28 models, the latter of which was an update that added (multilingual)
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multitask fine tuning (also known as instruction tuning). As before, all the inferences
on the small models were run locally. The biggest variant for BLOOM was run through
the Hugging Face API. BLOOMz was run locally, but with NF4 quantization56 to fit
into a single node.

The number of tokens was adjusted for the benchmark: ‘addition’ =256, ‘anagram’ =72,
‘locality’ = 132, ‘science’-OBQA =72, ‘science’-GPQA =384 for all the models, except for
GPT-3.5 and GPT-4, which used 1,000 tokens. For ‘transforms’, we used the formula
round(max(72,output_length)) x 3/4. All these numbers ensured that we could get long
enough responses that include the answers for approximately 99% of instances and
substantially reduce the cost. We used the default values for the stopping condition and the
rest of the parameters.

Evaluation of models

For each difficulty function, we rank the data examples and separate them into 30
equal-sized bins based on their difficulty values. With this, we calculate bin-wise
correctness, incorrectness and avoidance rates. Then, we plot these rates as a stacked bar
chart (Fig. 2), for which we calculate the Spearman rank correlation (Supplementary
Table 8). Similarly, we illustrate the prompt sensitivity of correctness, incorrectness and
avoidance by plotting the performance of each individual prompt template for these
dimensions across each model (Supplementary Figs. 12, 13 and 15).

Moreover, we delineate six reliability indicators for all the models in GPT (OpenAl),
LLaMA (Meta) and BLOOM (BigScience) families (Fig. 1). There are three categories of
answers: correct (c), avoidant (a) and incorrect (i). By separating correct from avoidant or
incorrect (¢ vs a+1), the design or evaluation focus is put on accuracy, whatever damage
the errors may do, but if correct or avoidant is placed against incorrect (¢ +a vs 1), the focus
is put on reliability. Instead of non-incorrect, we use the term prudent to refer to the group
of correct or avoidant answers as a whole. Accounting for these groups, we have two
versions for each of the following indicators.

Proportion: this measures the percentage of some of the groups of responses. In particular,
the correctness proportion is the probability of giving a correct answer, that
is, \({\mathbb{P} } ({\bf{c} }\langle \,j,p\rangle )\), where j and p refer to an instance and a
prompt for that instance, respectively, and c¢ represents correctness. The prudence
proportion 1is the probability of giving a prudent (non-incorrect) answer, that
is, \({\mathbb{P}}(\neg {\bf{i}}\langle \,j,p\rangle )\), where i represents incorrectness.
Prompting stability: this is the probability that the answer to an instance remains in the
same group after changing the prompt.
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Let us define such as \({\mathbb{P}}({\bf{c}}\langle \, j,{p}"{{\prime} }\rangle |
{\bf{c}}\langle \,j,p\rangle )\), where j refers to an instance, and p and p’ refer to two
prompts for that instance (which are not necessarily different). This measures just the
probability that given an instance—prompt pair that is correct (sampling uniformly from all
these positive pairs), we still get a correct answer if we sample another prompt. Similarly,
we define s—c as \({\mathbb{P}}(\neg {\bf{c}}\langle \,j,{p}"{{\prime} }\rangle | \neg
{\bf{c} }\langle \,j,p\rangle )\). Finally, we define correctness prompting stability as sc =0.5
(sc +s—c) and prudence prompting stability as sp= 0.5 (si +s™i). It can be shown that these
metrics go between 0.5 and 1; we scale them to go from 0 to 100.

Difficulty concordance: this measures the degree to which higher difficulty implies lower
quality of results. We will use the generality metric introduced in ref. 57, as it aligns
precisely with the concept of difficulty concordance. Technically, generality is a
non-parametric metric that measures how much the mass of success conforms to a step
function. If success were distributed like a descending logistic curve, generality would be
equal to the maximum slope of a descending curve, that is, the steeper the slope, the higher
the generality metric gets, and thus has a higher level of difficulty concordance. A model
being good for all instances up to a given difficulty and then bad for more difficult instances
would have perfect concordance. Therefore, this is not the same as correlation (see
Supplementary Table 8). Again, we define two versions, namely, correctness difficulty
concordance (which calculates the generality for the correct answers) and prudence
difficulty concordance (which calculates the generality for the prudent (non-incorrect)
answers). We transform it with x/(x+ 1) x 100 to get a value between 0 and 100. For
‘science’, we discount 25% of non-avoidant responses to account for random guesses.

We propose that researchers use these six reliability metrics for the initial analysis of the
reliability of any existing or future LLM. In Fig. 1, we do this by averaging the values
procured from the five benchmarks to provide a succinct summary of the reliability
fluctuations of the three families (detailed data are shown in Extended Data Table 1).

Following the advice in ref. 58, we strongly recommend that these metrics are always
accompanied by a detailed analysis and breakdown of results, as we have done in this paper
with the other plots.

Inclusion and ethics

The ethical committee of the Universitat Politécnica de Valéncia (UPV) approved the
present work. We conducted two human studies in which we recorded the perceived and
actual difficulty that participants have when solving some tasks (S1) and scoring the tasks
solved by LLMs (S2). The studies were performed using surveys implemented in the
Concerto platform. The users were recruited by using the Prolific platform. All participants
provided written informed consent on enrolment. They received compensation at a rate of
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£9 per hour. In this work, we used LLMs, which are trained on very different sources of
data and may have important ethical consequences, such as generating incorrect responses
that look plausible. The domains used in our experiments and the examples included in the
manuscript do not generate any specific ethical issue. We only use examples and prompts in
English.

Data availability

All data, including existing and newly created datasets, prompts, model responses, grading
(manual and automatic) and the human study data (questions and responses) are available
on Zenodo at https://doi.org/10.5281/zenodo.12794511 (ref. 59). To hinder data
contamination from automated web scraping, the relevant data files are provided as a
password-encrypted zip file, for which the access code is also provided in the
repository. Source data are provided with this paper.

Code availability

All code, including for data analysis, human study, plotting, algorithmic grading conditions
and  interacting  with  language  models, is available on  Zenodo
at https://doi.org/10.5281/zenodo.12794511 (ref. 59) and on GitHub
at https://github.com/wschella/llm-reliability.
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